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Introduction: An Absurd Interpretation

It may sound ridiculously impossible if someone claimed that the whole geo-
metric nature of our wonderful, well-developed, and rather complicated 21st-
century-world could be fully understood by spending some time with drawing
shapes on paper. You might be under the impression that in order to grasp the
true essence of geometry, one must be able to go through massive computations,
and probably have a degree in Architecture, Physics, Mathematics, etc. How-
ever, what if I told you that every single geometric concept you encounter daily;
every building, street, room, and perhaps even the most annoyingly complicated
shapes could be professionally interpreted, only if you could work out a clear
meaning of a straight line?

Lines and Vectors: How our world is shaped

Perhaps, if not the simplest, it happens to be a very trivial challenge to draw
a line on paper when even a three-year-old could do it. Now, imagine that you
have two points named A and B on a line. As soon as you mark these two
points, the part of the line that naturally gets stuck in between A and B is
called a line segment.
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For the sake of our further explanations, let AB denote the line segment.

Let us further the imagination by thinking of A and B as start- and endpoint
of a traveled path respectively. This path could naturally be illustrated by an
arrow, which A acts as its starting point and B would be its tip, illustrated by
an arrow head. Therefore, we would have:



Denoted by /@ , the arrow is called a Directed Line Segment, which starts at A
and ends at B. Now, assuming that we have two lines instead of one in the first
place, we could further our interpretations about the properties of line segments.
Assuming that the second line is parallel to our original, it is undoubtedly clear
that the discussed aspects about the points A and B also apply to two random
points C' and D on the second line. That is, there exists a line segment between

C and D, denoted by CD, as well as a directed line segment CD.
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Just as a mathematical terminology, we say that the directed line segments zﬁ
and C'D are “equivalent” if they have the same direction and magnitude. This
relation of equivalence is denoted by:

AB~CD

It is therefore a natural consequence of our interpretations to assume that such
properties and equivalences could also apply to three, four, or more parallel
lines. The more general question would be: What if we had infinitely many
lines? It becomes rather an exhausting process to mark a pair of points on each
line and work out the properties. To avoid being caught in an infinite loop,
we introduce the concept of vectors as a generalization of visualizing equivalent
directed line segments.

Let us choose one of the infinitely many equivalent directed line segments. For
instance, our original AB. The vector u which contains AB is in fact, a set of
all directed line segments that are equivalent to zﬁ, meaning that both C
and ﬁ as well as all the other equivalent directed line segments belong to the
vector u. If we choose AB and investigate the equivalency of all the other di-
rected line segments on u with respect to /@ , we call AB the representative of u.

Remark: Following the paper and drawing shapes analogy in the beginning,
note that everything we draw and interpret on paper, naturally applies to the
three-dimensional space. That is, instead of just choosing a point and a line on
a 2D paper, think of the line as a rope that goes from one side to the other side
of your room. Choosing two points on the rope would be an equivalent example
to the points (A, B) discussed above. From this point beyond, we develop our
imaginations in 3D space instead of a 2D plane.



Vectors in 3D space: Mathematical Properties

Generally speaking, vectors can be added together, subtracted from one another,
and be multiplied by a scalar. These properties are really nothing but the
consequences of our geometric interpretations, if we hold on to the definitions
we have developed so far.

Addition:
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For instance, if the two non-parallel vectors u and v are represented by directed
line segments PQ and @S, then the addition v+ v can geometrically mean that
we start from the point P, travel all the way to the point @, and then again
travel from @ all the way to S. That is, we have actually traveled from point
P to the point S (see figure above).

Note the fact that u and v are a set of directed line segments, meaning that we
could move them around in 3D space, without any loss of generality. Therefore,
if we set them to emerge from a common start point, it is possible to span a
parallelogram by the two vectors. The vector w which is the result of adding
the vectors u and v, is in fact the vector associated to the directed diagonal of
the parallelogram, starting from the common start point of the two vectors.

We state that there are further computational rules for vector addition that can
easily be verified with geometrical interpretations. Supposing that u,v, and w
are three vectors in space:

Commutativity law: v +v=v+u

Associativity law: v+ (v +w) = (u+v) +w

Cancellation law: If u +v =u 4 w then v = w

Neutral element law: v+ 0 =u

Subtraction:

Vector subtraction is directly defined by what we understand about addition.
Imagine a vector v in space. The vector (—v) has exactly the same magnitude as
v, but only points in the opposite direction. With that being said, subtracting



the two vectors u and v could be in fact interpreted as adding the vector u to
the vector (—v). We therefore write:

u—v =u+ (—v)

Geometrically speaking, the vector w = u— v is illustrated as the other directed
diagonal of the parallelogram spanned by u and v, which has its starting point
on the end of v pointing to the end of u.

Multiplication by a scalar:

Perhaps the most useful property in understanding how the geometrical aspects
of the world we know are dominated by vectors, is by studying the fact that
vectors can be multiplied by a scalar (i.e., number). If s is a real number and u
a vector in 3D space, then su is in fact, a rescaled version of u, and if we denote
the magnitude of w by ||u||, then the vector su has the magnitude s||ul].

At this point, this may seem not an important aspect to consider, but the
essential role of rescaled versions of vectors comes to attention when we discuss
the so-called Basis. We can therefore conclude that if two non-zero vectors are
parallel, one can be written as the scalar multiple of the other.

Basis: The core of the reality we know

1D Space:

Let’s get back to where we started: A line.

Assuming that we have a line called ¢ in space, and furthermore, we have a
vector u that is parallel to this line. Now, if we choose a vector on the line ¢,
name it e, the vectors u and e should also be parallel (Since u is parallel to £
and e is on £.) Recall that u is a set of directed line segments and therefore
could be moved in space. Assuming that we move the vector u and bring it on
the line ¢, It would be visually clear that u is a scalar multiple of e. That is, a
number x times vector e, gives us the vector u. And therefore, since u can be
represented by a directed line segment on ¢, we say that “u belongs to £”




How can we generalize this idea? Well, for any other vector « which belongs to
£, there exists a unique real number z. Such that:

u = xe

And just like that, the vector e becomes a so-called Basis for the line ¢ and x
becomes the Coordinate of u with respect to the basis e.

2D Space:

Now, suppose we have two non-parallel lines ¢; and ¢ which intersect one an-
other at a point. Judging by what we have already learned about lines in space,
we know that for every vector u which belongs to ¢, there exists a unique real
number z1. Such that: u = xye;. The very same properties and interpretations
apply to fo: for every vector v which belongs to /o, there exists a unique real
number x. Such that: v = x3es. Since ¢; and /5 intersect each other at a
point, a parallelogram could be spanned by their vectors u and v:
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Adding the two vectors w and v would give us the diagonal for the spanned
parallelogram. The vector w = uw + v would therefore become in the form:

w = x1€1 + Toeo

Just like how it was observed for a one-dimensional figure such as a line, we
now observe that for different coordinates x; and xo, the vector w would be
inside the plane M spanned by the two vectors v and v. In more general terms
we can say that a vector w belongs to a plane M, if w can be represented by
a line segment in M. On the other hand, every line segment on M could be
decomposed into a sum of the vector u = x1e; and v = xgey for some real
numbers z; and zs. It is therefore clear to conclude that the two non-parallel
vectors e; and e are the so-called Basis of the plane M, and x; and x5 are the
coordinates of the vector w with respect to the basis eq, es.

3D Space:

Finally, we arrive at what we could perhaps intuitively grasp better. We take
what we learned about vectors, lines and planes in two-dimensional space and
try to seek a meaning for them in the 3D space. By reviewing what we have



developed so far for one and two-dimensional spaces, it becomes somehow pre-
dictable that a 3D space brings an e3 in play, just as how a 2D space required
an eq to build up its structure. Here, we are not only trying to mathematically
describe all vectors in just a plane, but we’re seeking a general definition for all
vectors in space. To do so, we go down the same path as we did for the former
two cases. Assuming that we have three vectors ey, es, eg which do not lie on
the same plane, then every vector u can be written as

U = x1€e1 + Toe2 + T3€3.

How can we visualize this? How is this even true? The core of our visualization
would once again be a very simple geometrical figure: The line. Imagine three
lines ¢y, {5, {3, in space. f5 and {3 intersect at a point and a plane M is spanned
by the two vectors us and ug on the lines /5 and /3 respectively. The line £
which does not lie on M, intersects the plane M at a point.

As we already observed in the first case, the vector u; belongs to the line ¢; only
if u; = we;, with e; being the basis of /1. Naturally, the same interpretation
applies to us and us.

Now if u is a random vector in space (illustrated in pink in the following figure),
it can be decomposed into a sum of three vectors uy, us, and ug such that:

U = Uy + Uz + U3 = T1€1 + Toeg + T3€3

In simpler terms, the addition of two vectors us and uz would naturally provide
us with a vector inside M. Now, by adding this vector to uy, the result vector
would be outside of that plane, somewhere in space with respect to the basis
e1, eg, and es.

1, T2, and z3 are called the Coordinates of the vector u and could be abbrevi-
ated as u = (x1, z2,23)

As a final mathematical terminology, we say that the vectors e1, eo and e3 are
Linearly Independent and consider the vector u as a Linear Combination of
these vectors.
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